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ABSTRACT 

 

Helen J. Michaels & Karen V. Root, Co-Advisors 

 

The Oak Openings Region in Northwest Ohio is one of the few remaining remnants of oak 

savanna and oak barrens, or “oak savanna complex.”  It is a 33,670 ha complex of globally-

significant ecosystems and has more listed species than any other similarly-sized region in the 

state.  Agriculture, drainage and fire suppression have reduced its area by half, underscoring the 

need to locate and prioritize appropriate habitat for acquisition and conservation.  Land managers 

often have difficulty in implementing regional conservation efforts due to a lack of detailed 

ecological knowledge or habitat quality data.  I used ArcGIS 9.1 to build a predictive geographic 

model (PGM) to detect oak savanna complex remnants and restorable patches by determining 

significant ecological variables from known remnant patches.  Software and data used was 

constrained to readily available sources and ecological variables investigated included soil type, 

elevation, slope, topographic position and aspect.  This research used predictive modeling in a 

new way by using it to predict areas of high probability of a rare ecosystem, rather than its 

typical use for creating predictive habitat models for individual taxa, multiple taxa or vegetative 

communities.  The resulting model succeeded in locating potential remnants and restorable 

patches at the landscape level, as well as creating a suitability index to rank the probability of 

accurately predicting oak savanna complex presence at the landscape level.  Both simple 

statistics and regression analysis were used to determine the significant predictors of oak savanna 

complex presence:  suitable soil types; mean elevation and topographic position.  Single-variable 

predictive models reduced the county-wide search area as much as 93% with a predictive 
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accuracy of 87 – 100% .  However, combining these models into a multi-variable model reduced 

the search area as much as 99%.  Regression analysis determined that the model explaining the 

highest amount of variance used only two ecological variables:  suitable soils and mean 

elevation.  Validation of this two-variable model on a randomly-generated data set proved it was 

90% accurate in locating high-probability areas of oak savanna complex.  This research produces 

a scientifically robust predictive ecosystem model that more simply and systematically locates 

and prioritizes conservation at a landscape scale.
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“A thing is right when it tends to preserve the integrity, stability and beauty of the biotic 

community. It is wrong when it tends otherwise.” 

 

- Aldo Leopold, Sand County Almanac and Sketches from Here and There, 1949 

 

 

“The last word in ignorance is the man who says of an animal or plant: "What good is it?" If the 

land mechanism as a whole is good, then every part is good, whether we understand it or not. If 

the biota, in the course of aeons, has built something we like but do not understand, then who but 

a fool would discard seemingly useless parts? To keep every cog and wheel is the first precaution 

of intelligent tinkering.” 

 

- Aldo Leopold, A Sand County Almanac: with essays on conservation from Round River, 1949
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I.  INTRODUCTION 

Oak Savannas and Barrens:  Biodiversity Hotspots in Peril 

 Oak savannas and barrens, once abundant, are now globally rare ecosystems with less 

than 20,000 ha remaining globally.  Locally, they are listed as critically imperiled with less than 

1,000 ha in the entire state of Ohio (The Nature Conservancy 2000; Stein et al. 1995.   This 

rarity, coupled with their importance as habitat for locally rare species, makes it imperative that 

their conservation and restoration become a priority for land managers, planners, conservation 

organizations and the general public.  Human activities – agricultural conversion, fire 

suppression, and hydrological alteration – have reduced their extent in the Midwest  by over 99%  

(Conner et al. 2001; Nuzzo 1986), placing savannas and other grasslands at the top of a federal 

“critically endangered” ecosystem list (Noss et al. 2003).  In Ohio, only three known savanna 

remnants still exist, two in the northwestern Oak Openings Region and one in central Madison 

County (Fig. 1). 

 The Oak Openings Region, shown in Fig. 2, is actually a complex of six globally rare 

ecosystems including oak savanna and oak barrens, hereinafter referred to as oak savanna 

complex (Brewer & Vankat 2004).  This diverse range of ecosystems provides a wide range of 

habitats for over 177 federal- and state-listed species:  over 1/3 of Ohio's listed species and more 

listed species than any other similarly-sized region in the state.  Species of note include the 

federally-listed Skinner’s false foxglove, Agalinis skinneriana, and Karner blue butterfly, 

Lycaeides melissa samuelis (Ohio Department of Natural Resources Division of Natural Areas 

and Preserves 2004; The Nature Conservancy 1997).  More species are being identified annually 

– only 113 had been identified by 2001 (The Nature Conservancy 2000).  Historically, the region 
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supported diverse fauna including bison, elk, squirrel, fox, lynx, wolverine, mountain lion, 

bobcat, grey wolves, black bear, beaver and porcupine (Mayfield 1976).  Reported bird species 

include sandhill cranes, swallow-tailed kites, golden-winged warblers, greater prairie chickens, 

wild turkeys, eastern ruffed grouse, Henslow's sparrows and lark sparrows (Mayfield 1976). 

Various insects, especially butterflies and moths, depend on the unique savanna and wet prairie 

ecosystems for nectar- and host-plants (The Nature Conservancy 2000).  For these reasons, The 

Nature Conservancy (TNC) has identified the Oak Openings Region as one of its “Last Great 

Places” (Green Ribbon Initiative 2004).   

 The losses of thousands of hectares of these rare ecosystems and species is doubly 

important because these losses decrease regional biodiversity.  This, in turn, decreases the 

stability of the environment and its ability to recover from anthropogenic or natural stressors 

such as land conversion, drought or fire (MacDougall 2005; Meffe & Carroll 1997).  As 

commercial and residential development continue to spread out from the City of Toledo, Ohio, 

these losses will continue, unless land managers, scientists, politicians and the public quickly 

identify remaining oak savanna complex patches and target them for acquisition and 

conservation efforts.  Applying the principles of conservation biology and landscape ecology 

towards prioritizing conservation efforts and analyzing the relationships amongst ecosystems and 

ecological processes at landscape scales will greatly improve the ability of land managers to 

respond quickly and effectively to threats to these “great places” (Turner et al. 2001; Meffe & 

Carroll 1997).  This project is designed to fulfill this need by designing a method to accurately 

locate and prioritize oak savanna complex patches, based on ecological variables. 
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Oak Savanna Complex Composition and  Extent  

 The extent of oak savanna in North America prior to European settlement was estimated 

as approximately 50 million hectares (Conner et al. 2001).  This habitat was located in two north-

south bands, one along the Pacific Coast and one east of the Great Plains.  The latter zone was a 

transition band between the prairie grasslands to the west and the deciduous forests to the east.  

The Midwestern oak savanna region – the northern half of the central transition band – was 

estimated as more than 11 million hectares (Nuzzo 1986).  Because of its co-existence with 

prairies and its nature as an extension of the Great Plains grassland complex, Transeau (1935) 

called this area the “Prairie Peninsula.  Due to fire suppression, agriculture conversion and 

hydrological alteration, less than 0.02% of the historic extent of Midwest oak savannas remains 

(Conner et al. 2001; Nuzzo 1986).  This highlights the crisis that conservationists face:  how do 

we find exactly where the remnants are located and how do we prioritize acquisition and 

restoration efforts? 

 The first step in conservation is identifying and quantifying the area of interest.  Oak 

savannas are a terrestrial ecosystem generally described as prairie-like with an herbaceous 

groundcover of grasses and forbs on a sandy plain and interspersed with groves or individual oak 

trees (Brewer & Vankat 2004; Noss et al. 2003; Meisel et al. 2002;Leach & Givnish 1999; 

Packard & Mutel 1997; Dunevitz 1993; Haney & Apfelbaum 1993; Apfelbaum & Haney 1990; 

Nuzzo 1986; Nuzzo 1985; Hehr 1970; Gordon 1969;Transeau 1935; Sears 1926).  They are 

usually considered an intermediate phase or ecotone between prairies and oak woodlands and not 

as an independent ecosystem, shown in Fig. 3 (Packard & Mutel 1997).  However, the defining 

ecological variables of oak savannas vary among researchers, disciplines and agencies, which is 

reflected in the plethora of names for the ecosystem, e.g., oak openings, oak barrens, scrub 
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prairie, brush prairie, and savanna (Nuzzo 1986; Gordon 1969; Sears 1926).  Attempts to 

quantify the density of tree cover of oak savannas have yielded different opinions.  Curtis (1959) 

stated that it was “the most variable of all characteristics of the oak openings” and set a threshold 

of 50% canopy between savanna and forest “[p]urely for convenience”; he was unable to find 

any such threshold between savanna and prairie.  In summary, each state in the Midwest has a 

different set of criteria for defining oak savanna (Nuzzo 1986).  Anderson’s definition, which is 

the definition accepted by the Ohio Department of Natural Resources for the State of Ohio is “a 

community in which oaks and occasionally other tree species ‘comprise a prominent yet partial 

overstory’ with canopy levels of 10-100% ‘above a prairie understory” (Nuzzo 1986). The lack 

of specificity and great latitude of both variables and quantified values in this definition made it 

less than useful for a priori determination of the significant ecological predictors of oak savanna 

presence.  One option for building a predictive model was to build a deductive model based on 

the assertions of significant ecological variables through either expert opinion or expert 

literature.  This method has been shown to produce predictive models of lower predictive 

accuracy and transferability (Corsi et al. 2000; Guisan & Zimmermann 2000).  Therefore, I 

decided to build an inductive model based on known sites of oak savanna complex presence, 

based on statistically significant ecological variables.   

 Ecological Processes as Ecological Variables 

 Oak savanna complex is both created and maintained by three primary ecological 

processes:  soil development from glaciation and other geological activity; periodic fire 

disturbance; and well-draining surface and groundwater hydrology.  Knowledge of the 

importance of these processes guided my investigation into both the determination of significant 

ecological variables and construction of  the predictive model. 
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 Each of these ecological processes is itself driven by interacting biotic and abiotic factors.  

For example, soil development is driven by five factors:  climate and living organisms (biota) 

acting on parent material over time under the influence of topography.  The most influential 

factors are climate, topography and the parent material itself (Brady & Weil 1999).  If any one of 

these factors changes for any of the primary processes, the resulting ecosystem and vegetative 

community may change, depending on the influence of that particular factor, both individually 

and synergistically with the other factors (Forsyth 1970).  More importantly, a certain 

combination of variables in one space or time may yield the same ecosystem that results from a 

different combination of variables in a different space or time.  This property of ecosystem flux 

limits the transferability of any predictive model to a region dictated by both the spatial and 

geographic extent of the model’s training data set.  Transferability of the model is also dictated 

by the extent of the model’s explanation of causality versus its function as merely descriptive, as 

well as the nature of the ecological variables upon which it is built (Corsi et al. 2000; Guisan & 

Zimmermann 2000).   

 My investigation for the significant predictors of oak savanna was guided by this 

knowledge of primary ecological processes – glacial activity, fire, hydrology – and their 

interacting factors – climate, topography, parent material.  These processes resulted in the 

formation of the Oak Openings Region in the following manner:  the global climate around 

12,000 years before present (b.p.) created glacial processes that reworked the surface and 

subsurface strata of North America, resulting in a landscape of alternating sandy ridges, glacial 

outwash lakebeds and subsurface clay strata that were the future parent material of the Oak 

Openings Region (Weiher 2003; Meisel et al. 2002; Leach & Givnish 1999;Forsyth 1998, 1968, 

1959).  Two other ecological processes – fire and hydrology – then reworked the resulting 
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landscape to create the resulting complex of oak savanna, wet prairie and floodplain forests.  

 Other ecological processes that influence oak savanna structure include activity by 

vegetation and animals.  Digital data on the actual biotic activity was not available, so surrogate 

measures of productivity and biomass were pursued, including light-availability, canopy-cover 

and tree-density (Weiher 2003, Leach & Givnish 1999).  For all of these landscape-scale 

ecological processes, quantifying the actual process was not possible.  Therefore, I focused on 

quantifying their results:  soil type; elevation; slope; and aspect. 

   It is also possible to use individual plant or animal taxa as species indicators of oak 

savanna, but this concept has drawbacks.  First, correlation between presence or absence of the 

species and the ecosystem is not perfect, e.g., because the species is not there does not mean the 

ecosystem is not there, nor vice versa.  Second, ranking of plants and animals according to their 

conservatism, i.e., level of obligation or facultation to a particular ecosystem, has been 

performed, but more often for wetlands than uplands.  Third, those species most likely to be 

obligative indicators of oak savanna are also most likely to be rare or listed species, such as the 

Karner blue butterfly, Lark Sparrow, or Dotted Horsemint.  The data on locations and 

abundances of these species are not openly disclosed to the public and require approval by the 

ODNR Division of Natural Areas and Preserves and, therefore, would not be readily available 

information to the typical land manager (Ohio Department of Natural Resources Division of 

Natural Areas and Preserves 2005). 

 I investigated the effects of the glacial geological processes by analyzing soil type, 

elevation and aspect.  The geologic ontogeny of the region resulted in a series of high ridges of 

sandy soils that were the beaches of Glacial Lake Warren roughly 9,700 years b.p. (Forsyth 

1959).  These sandy ridges, piled higher by winds into dunes before vegetation eventually 
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stabilized them, were meters above the surrounding wetter prairies and floodplain forests and 

were the sites of oak savanna complex establishment and current remnants. 

 I also investigated slope and topographic position because they influence the historic and 

future tendency for fire disturbance, either environment- or human-initiated, by indirectly 

affecting soil moisture availability, fuel availability and wind speed and direction.  Fire is 

commonly accepted as the primary disturbance factor in maintaining oak savanna health by 

burning the organic ground layer; warming soil temperatures; releasing soil nutrients from ash; 

stimulating microbial activity; promoting sod formation which inhibits woody seedling 

establishment; and killing fire-intolerant herbaceous and woody plants (Brewer & Vankat 2004; 

Weiher 2003; Meisel et al. 2002; The Nature Conservancy 2000; Packard & Mutel 1997; Haney 

& Apfelbaum 1993; Apfelbaum & Haney 1990; Gordon 1969; Curtis 1959). 

 Soil type, slope and topographic position were important because they also influence, or 

reflect the action of, ground water hydrologic processes.  The perched water table caused by the 

interspersion of the sandy soils and subsurface clay created a combination of dry and saturated 

soils that resulted in xeric ecosystems in the dunal savannas and mesic and flooded areas in the 

interdunal wet prairies and their associated vegetative communities (The Nature Conservancy 

2000; Mayfield 1976). 

 Additionally, increases in relative elevation have been linked to higher species richness 

(Nally et al. 2003).  So, even though individual species will not be used as ecological variables, 

higher elevations may serve as a proxy or indirect indicator of the high species richness 

associated with oak savannas. 
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Predictive Modeling and GIS:  Expanding the Toolbox 

 Land managers must often make expedited decisions on planning, conservation and 

restoration that require scientific knowledge.  This often involves identifying areas suitable or 

unsuitable for both for natural area management as well as for human development.  When 

quantifiable data is lacking, many decisions are made on anecdotal knowledge or based on 

scientifically unsupported assumptions (Johnson & Gillingham 2004; Clevenger et al. 2002).   

 Predictive modeling (PM) can determine the suitability of areas for conservation efforts 

more accurately than merely relying on expert opinion (Vaughan & Ormerod 2003; Corsi et al. 

2000; Guisan & Zimmermann 2000).  Predictive habitat models are used to locate suitable 

habitat for selected species.  Similarly, predictive geographic models (PGM) are used to locate 

geographic areas meeting specific ecological criteria.  Regardless of the target, these models use 

one of two general methodologies:  deductive or inductive modeling.  Deductive models use a 

priori assumptions of the ecological variables associated with the presence of the species or 

geographic area to train the model.  Inductive models use known sites of presence or absence of 

the species or geographic area of interest and train the model on the ecological variables of these 

known sites to locate similar areas with a high probability of additional populations or similarity. 

 PMs are useful because they greatly reduce the amount of area that must be physically 

surveyed for either new populations or suitability for conservation, a trait that makes them 

invaluable to conservationists with limited funds, time and personnel.  They are frequently used 

for single taxa such as mammals (Johnson & Gillingham 2004; Treves et al. 2004; Allen et al. 

2001; Carroll et al. 2001), birds (Seoane et al. 2005; Larson et al. 2004), butterflies (Nally et al. 

2003; Luoto et al. 2002, 2001) and even amphibians (Lipps 2005).  They are occasionally used to 

predict single plant species but more often for predicting plant communities (Cohen & Goward 
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2004; Hong et al. 2004; Kupfer & Franklin 2000; Franklin 1995).  Multi- and cross-taxa PMs are 

also used as the foundation of regional conservation plans (Armenteras et al. 2003; Root et al. 

2003; Kautz & Cox 2001; Hoctor et al. 2000).  Land managers seeking to preserve oak savanna 

complex in Lucas County have an area of almost 89,000 ha to search or at least 33,000 if the 

search area is limited to the Oak Openings Region.  A PM that successfully locates oak savanna 

complex would prove invaluable for conservation and restoration efforts, especially if it could 

reduce the search area to less than 5%, or 4,500 ha. 

 No single model, regardless of its complexity, can accurately predict nature’s form – 

physiography, species, processes – across both time and space, due to the individual 

heterogeneity and complexity of time and space as well as their combined complexity (Levins 

1966).  This is true for predictive models, especially those which try to accurately and precisely 

reflect the real world while attempting to make broad generalizations.  Simpler models based on 

fewer variables are often more generalizable but unable to model the complex interactions found 

in nature.  More complex models based on a higher number of variables may be able to model 

these interactions but have a greater chance of being restricted in their spatial or temporal 

applicability as well as higher risk of having accepted an incorrect model assumption (Green et 

al. 2005; Guisan & Zimmermann 2000).  Therefore, when creating a model, the research 

objectives should be taken into account when deciding which two of three characteristics the 

model will maximize:  realism; precision; or generalism.  The resulting models will be, 

respectively, more empirical/phenomenological; analytical/theoretical or mechanistic/process-

based.  This can be viewed as a triangular continuum, wherein approaching two of the objectives 

requires sacrificing the third, as shown in Fig. 4 (Guisan & Zimmermann 2000; Levins 1966).  

As my PGM was descriptive and not causal, and seeks to model the existing ecosystem as 
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realistically and precise as possible via a large dataset of training sites, it is more empirical and 

analytical as opposed to mechanistic. 

 Model variables represent one of three types of environmental gradients:  resource; 

direct; or indirect (Vaughan & Ormerod 2003; Guisan & Zimmermann 2000; Franklin 1995).  

Resource gradients reflect the matter and energy directly consumed by the organism in question:  

water; light; nutrients (plants) or food (non-plants).  Direct gradients reflect items that are not 

consumed but are physiologically important parameters such as pH or temperature such as pH 

and temperature.  Indirect gradients are not physiologically relevant but are often correlated with 

species distributions and thought to be surrogate measures for singular or multiple resource or 

direct gradients, e.g., slope, aspect, topographic position, ecosystem type, or geology.  The 

choice of gradient type depends on the model type, its spatial and temporal scales and its 

intention to account for disturbance and/or climate change.  Resource and direct gradients are the 

most appropriate variables for generalistic-mechanistic models as they are the most ecologically- 

and biologically-relevant.  However, they are the most difficult gradient type on which to obtain 

digital data.  Indirect gradients are appropriate for non-mechanistic models, have the most 

abundant data resources, but their distance from the actual causal factors places constraints on 

the spatial and temporal transferability of the model (Vaughan & Ormerod 2003; Guisan & 

Zimmermann 2000; Franklin 1995).  Because my model was descriptive, not causal, and is not 

designed to be transferred to areas or times outside the spatial or temporal extent of the training 

sites, the most appropriate choice was to use indirect gradients. 

 In addition to model type and variable type, PMs can be classified according to their 

logical approach.  Deductive models start with a priori assumptions of the habitat preferences or 

requirements of the organism or area of interest – typically ecological variable requirements such 
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as vegetation, moisture, temperature – and then finds areas that meet these criteria.  Inductive 

models do not start with a priori assumptions.  Rather, they start with sites of known presences 

and absences, determine the values and significance of various ecological variables at the 

different sites, and then finds areas that meet these criteria.  Because they are based on fewer 

assumptions, inductive models have a lower potential for predictive error.  Because of the 

subjectivity of current definitions and the lack of consensus on measurable ecological variables 

associated with oak savanna, plus the existence of a large data set of remnants available for 

model training sites, I chose to build an inductive model. 

 Many predictive models are created using Geographic Information Systems (GIS).  GIS 

is routinely used for government and commercial planning and management but is increasingly 

being use for planning and management of natural areas and other natural resources (Cohen & 

Goward 2004; Nally et al. 2003; Clevenger et al. 2002; Luoto et al. 2002; Clark & Slusher 2000; 

Corsi et al. 2000; Breininger et al. 1998; Lathrop & Bognar 1998).  GIS is well-adapted to 

processing the vast amounts of presence/absence and ecological variable data and can then 

present the resulting predictive models as easily understood maps (Chang 2004; Theobald 2003).  

My research will use a GIS-based predictive model to locate patches of oak savanna complex 

and prioritize them according to their probability of success for supporting conservation or 

restoration efforts.   In summary, this was a descriptive, empirical and analytical PGM for oak 

savanna complex which maximized both the realistic and precise representation of the target 

ecosystem.  It used inductive modeling techniques based on a large training data set and indirect 

environmental gradients as the ecological variables. 
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Research Objectives and Approach 

 My research goal was to minimize the uncertainty in land management decision-making 

by creating a predictive model that was both realistic and precise and was based on the fewest 

assumptions.  To minimize assumptions and risk of predictive error, I built an inductive model 

that would still be able to generalize to the necessary spatial and temporal scale.  Additionally, 

because this model described the current environment and did not attempt to explain the 

environment in terms of causal factors, it was an empirical model, not a mechanistic model. 

 Based on the information regarding the importance of glaciation, fire disturbance and 

ground water on oak savanna creation and maintenance, I hypothesized that a model using sandy 

soil types, higher elevation; moderate slope and canopy cover of 10-30% can predict oak 

savanna complex with a high probability.  Although this research focused on the first three 

questions, long-term research will address all of the following questions: 

1. “What are the significant ecological predictors of oak savanna complex?”  

2. “Where are the areas that have the highest probability of presence of oak savanna?” 

3. “How can we prioritize areas for expenditure of limited conservation resources?” 

4. “How can we optimize conservation efforts by connecting existing protected areas?” 

Conservation Implications 

 Currently, when conservationists, environmental planners and land managers plan 

conservation and restoration efforts, they are limited to personal field knowledge or non-

quantifiable estimates of the location of remnant or potentially restorable areas (Johnson & 

Gillingham 2004).  Although ecosystems and vegetation cover types are often mapped and 

occasionally even characterized, they have not been the focus of inductive predictive models 
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(Franklin 1995).  My research is innovative because it applies two proven techniques in a new 

way by using predictive modeling and GIS to determine significantly predictive ecological 

variables and using them to build a predictive model for a rare ecosystem – oak savanna 

complex.  Additionally, it broadens the scale of conservation efforts from a small region 

surrounding currently protected areas in a few clustered townships to the landscape level of 

Lucas County.   

 The methodology of this research is invaluable because it is simple and straightforward 

and can be replicated by land managers, planners and scientists alike.  The method also produces 

testable hypotheses and generates statistically analyzable data.  The model concept itself is 

valuable because it can be applied to other ecosystems simply by training the model using 

presence and absence sites of that ecosystem.  Finally, its ability to handle new environmental or 

anthropogenic conditions such as land alteration, ownership changes or new threats,  through the 

routine input of updated or improved data make it perfect for conservationists implementing 

adaptive management plans. 
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II.  METHODOLOGY 

General Approach 

 My objective was to use GIS to build an inductive PHM for oak savanna complex based 

on a data set of oak savanna and oak barrens remnants and significantly predictive ecological 

variables.  I used ArcGIS 9.1 to process the oak savanna complex presence/absence data and the 

data on ecological variables and to produce my predictive habitat maps (ESRI 1999-2002).  My 

access to a large data set of oak savanna training sites allowed me to use readily available 

statistical software, SAS 8.01, to perform robust tests to determine which ecological variables 

were significant predictors:  suitable soils and elevation (SAS Institute Inc. 2000).  My modeling 

methodology required: 

1. collating readily available methods and data; 

2. compiling a data set of functioning and degraded oak savanna and oak barrens remnants; 

3. identifying  the ecological variables that are significant predictors of the presence of 

high-quality and/or degraded oak savannas and related oak barrens (oak savanna 

complex), based on characteristics of known presence sites; 

4. building a predictive geographic model (PGM) built on these known presence sites that 

locates areas with high probability for the presence of oak savanna complex; 

5. evaluating the various candidate PGMs for relative accuracy using an reserved portion of 

the known presence sites; and 

6. validating the final PGM by truthing a set of validation sites selected from its predicted 

area of high probability of oak savanna complex presence across the entire county. 
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 The following sections describe in detail the focus area and study site selection; modeling 

process; and model conception, training, calibration, evaluation, and validation. 

Focus Area and Study Site Selection 

 My focus area was the Oak Openings Region of Lucas County, part of a 193-km sand 

belt extending from Napoleon, Ohio, to Detroit, Michigan.  In Gordon’s 1966 map, “The Natural 

Vegetation of Ohio at the Time of the Earliest Land Surveys,” the area was listed as “oak 

savannas,” a subtype of mixed oak forests, surrounded by beech forests, elm-ash forests and 

prairie grasslands (Fig. 5).  The original extent of the area was approximately 77,000 ha (Gordon 

1969).  Timbering, agricultural conversion and construction drainage took their toll on the 

natural landscape and reduced the region to its current extent of approximately 33,670 ha.  This 

remnant was extensively surveyed by Edwin Moseley in his classic publication, “Flora of the 

Oak Openings” (Moseley 1928).   

 As stated previously, the region is actually a complex of globally and locally rare 

ecosystems.  The upland sandy areas supported oak savanna, formally known as Black 

Oak/Lupine Barrens (G3/S1), oak barrens, formally known as Midwest Sand Barrens (G2/G3), 

Mesic Sand Tallgrass Prairie (G2), and Black Oak-White Oak/Blueberry Forest (G4) ecosystems 

(Noss et al. 2003; Stein et al. 1995; The Nature Conservancy 1997).  Historically, the upland 

beach ridges and dunes supported 24,300 hectares of oak savanna and barrens, hereafter called 

“oak savanna complex,” with an average tree density of 2.4 trees per hectare.  I chose the Brewer 

& VanKat delineation of the Oak Openings Region over Moseley’s delineation because it was 

based on land surveys of 1817-1832, placing its estimate closer to the time of presettlement.  It 

also provided finer-scale ecosystem subcategories, and was available as a digital data layer easily 

imported into ArcGIS 9.1 (Brewer & Vankat 2004). 
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 My research objective was to create a predictive geographic model (PGM) for oak 

savanna complex usable by land managers without extensive ecological knowledge using a 

methodology adaptable to identify and locate other ecosystems of interest.  Therefore, the 

methodology itself had to be simple and had to use readily available data and technology.  

Because I did not find conclusive agreement in the relevant literature on the significant 

ecological variables that can predict oak savanna complex presence, I chose to use an inductive 

model which would generate the significant ecological variables from a data set of known 

presence sites (Weiher 2003; Leach & Givnish 1999; Nuzzo 1994; Haney & Apfelbaum 1993; 

Apfelbaum & Haney 1990; Curtis & McIntosh 1951).  Because I did not have personal field 

knowledge of these sites, I used expert opinion to compile this data set but not to solicit any 

opinions regarding selection of ecological variables for the model.  Recent research indicates that 

use of expert opinion for model variable selection actually decreases a model’s predictive 

accuracy without improving transferability of the model to other areas (Seoane et al. 2005; 

Johnson & Gillingham 2004; Clevenger et al. 2002).  For purposes of standardization, land 

managers categorized their areas according to the NatureServe classification scheme.  Oak 

savannas and oak barrens most closely matched NatureServe’s “Black Oak/Lupine Barrens” and 

“Midwest Sand Barrens,” respectively (NatureServe 2005).  

 I consulted land managers from The Nature Conservancy (TNC) and the MetroParks of 

the Toledo Area (Gary Haase, pers. comm.; John Jaeger, pers. comm.; Tim Schetter, pers. 

comm.) and asked them to identify sites with oak savanna habitat.  Paper maps provided by TNC 

were scanned and digitized into a non-topological vector file using ArcGIS 9.1 (ESRI 1999-

2002).  MetroParks provided its data as vector files created in ArcView 3.2 (ESRI 1992-1999) 

which were readily imported into ArcGIS 9.1. The land managers were asked to differentiate 
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between functioning (high-quality) and degraded oak savannas.  Functioning oak savannas were 

defined as those more closely meeting the NatureServe ecosystem criteria with a higher 

percentage of oak savanna-associated species and a physiography (topography and landforms) 

more closely resembling a functioning oak savanna.  Degraded oak savannas were further from 

meeting the NatureServe criteria with fewer oak savanna-associated species and a less savanna-

like physiography.  Degraded sites were those that had not been the object of restoration efforts 

or had been only recently acquired.  Only thirty-seven oak savanna areas were identified, totaling 

241.09 hectares, as either functioning or degraded oak savanna (Table 1). 

 

Table 1.  Composition and characteristics of oak savanna and oak barrens study sites, categorized 
by quality and ecosystem subtype. 

Ecosystem type No. of  sites Area (ha) 

functional oak savanna 15 71.81 

functional oak barrens 17 36.35 

degraded oak savanna 22 169.28 

degraded oak barrens 8 24.96 

total 62 302.40 

mean  4.88 

variance  44.88 

range  0.10 – 33.84 
 

 Because the accuracy and utility of PGMs are directly related to the size of the model’s 

training data set, I decided to increase the number of study sites by including the closely-related 

oak barrens sites.  This larger training data set improved the model by allowing a greater number 

of model variables while minimizing over-fit of the model.  Current research suggests that no 

more than m/10 variables be included in the final model, where m equals the number of 
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observations (Vaughan & Ormerod 2003; Guisan & Zimmermann 2000; Harrell et al. 1996).  

The additional study sites also facilitated internal evaluation of the various candidate models to 

rate their relative predictive accuracy. 

 Increasing the number of training sites provided other benefits.  First, it facilitated later 

exclusion of some of the smaller sites if their size or spatial configuration placed constraints on 

the analysis.  Second, it provided flexibility to land managers who may require a larger selection 

of acquisition or restoration sites than afforded by the oak savanna data set.  Finally, inclusion of 

the second ecosystem provided enough study sites to allow creation of individual “functioning” 

and “degraded” study site models for future analyses.  An additional twenty-five oak barrens 

study sites were located, for an additional 61.31 hectares.  The combined total was 62 sites 

encompassing 302.40 hectares and covering a range of sizes and configurations (locations are 

shown in Fig. 6).  These sites formed the foundation of the PGM.  Table 2 lists the various data 

sets used in the model and their method of generation.  To evaluate the created models, I 

randomly divided the study sites into a training data set (75% subset) and an evaluation data set 

(25% subset), following current statistical methods (Seoane et al. 2005; Guisan & Zimmermann 

2000).  Training and evaluation site characteristics and locations are included in Appendix B., 

Tables 14 and 15.  The accuracy of the final predictive model was validated against a data set of 

sites randomly selected from within the area of the highest probability of presence of oak 

savanna complex, i.e., model validation set.   
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Table 2.  Characteristics of data sets of study, training, simulated, evaluation and validation sites.   
Number of sites; total and mean areas, and method of data set generation are indicated. 

 

Modeling Process 

 I followed the general four-step modeling process, shown in Fig. 7:  (1) model 

conception/formulation; (2) model training/calibration; (3) model evaluation; and (4) model 

validation (Corsi et al. 2000; Franklin 1995).  Model conception involved reviewing the 

literature for candidate ecological variables, consulting experts to build a data set of known oak 

savanna complex sites, generating a data set of simulated oak savanna complex absence sites to 

compare the training data set against, and collection of digital data on the candidate ecological 

variables.  Model training involved determining the ecological variables that were statistically 

significant predictors of oak savanna complex by comparing the known presence sites to the 

absence sites, and building the various candidate predictive models.  Model evaluation entailed 

comparing the predictive accuracy of the various candidate models by determining the following 

Data set Sites Total area 
(ha) 

Mean 
area (ha)

Generation method 

study sites 
(presence) 

62 302.40 4.88 expert opinion 

training  
(presence 
sites) 

47 220.91 4.70 randomly selected from study site data set using 
Hawth’s Tools extension in ArcGIS 9.1 

simulated  
(absence 
sites) 

47 229.36 4.88 randomly generated within Lucas County, 
outside of study site data set, using Hawth’s 
Tools extension 

model 
evaluation 
(internal) 

15 81.49 10.19 remaining study sites 

model 
validation 
(external) 

10 point  
data 

point  
data 

randomly generated within area of highest 
probability using Hawth’s Tools extension  
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for each:  the number of evaluation sites correctly predicted; the total evaluation data set area 

correctly predicted; and the amount of reduction in search area provided.  Model validation was 

accomplished by generating a set of validation sites within the area of highest oak savanna 

complex probability predicted by the PHM, and then analyzing the immediate and adjacent land 

use and land cover of these sites using high-resolution aerial photography to determine their 

potential for oak savanna complex presence or restoration. 

Model Conception 

 Digital data on soil type, elevation, slope and aspect were obtained or generated from 

various sources.  Data availability, resolution and currency were comparable.  All data were free 

to the public either online or upon submission of a research proposal (Table 3).  Format of the 

data was either in GIS-importable non-topological vector files or raster data sets. 

Model Training:  data collection and processing 

 Soil type data was available as a raster data set from the Ohio Department of Natural 

Resources Geographic Information Management System (2005) and as a non-topological vector 

file from the Lucas County Auditor in its 2005 Auditor’s Real Estate Information System 

(AREIS) update (Kaczala 2005).  Both are based on a soil surveys conducted between 1973 and 

1976 (Stone et al. 1980).  I chose the vector file because it was more current and of a higher 

standard (national-level SSRGO versus state-level STATSGO) (Larry Kaczala, pers. comm.).  I 

then converted it to a raster data set (Fig. 8) using the Spatial Analyst extension in ArcGIS 9.1 

(ESRI 1999-2002).  There were 62 different soil types in Lucas County, grouped into 

pedologically-relevant soil  
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associations,  Although the categories of soil type were considered nominal-level data, the 

statistical analysis was based on the area of each soil type contained in each of the model  

presence and absence sites.  This ratio-level data allowed for a one-way nonparametric analysis 

of variance (ANOVA) using SAS 8.01 to determine which soil types were significant predictors 

of oak savanna complex presence. 

 Topographically-related ecological variables were based on a digital elevation model 

(DEM) obtained from the U.S. Geological Survey Earth Resources and Observation and Science 

(EROS) Center’s online Seamless Data Distribution System (US Geological Survey 2005).  The 

mean elevations for the training sites were compared to those of the simulated sites to determine 

if mean elevation was a significant predictor of oak savanna complex presence.  From this DEM, 

I derived a slope data set and an aspect data set using the Spatial Analyst extension.  Mean slopes 

of the training sites were compared to those of the simulated sites to determine if mean slope was 

significant predictor of oak savanna complex presence.  The aspect raster data set, Fig. 11, 

included many flat areas with no orientation to the sun and non-flat areas whose orientation 

ranged from 0° to 360°.  Because flat areas have no aspect, it was necessary to perform the 

analysis in two steps.  First, the mean percent of flat areas of the sites was analyzed to determine 

if this characteristic was a significant predictor.  Next, the mean aspect for the remaining non-flat 

areas was analyzed to determine if orientation to the sun of these areas was a significant 

predictor.   

 I converted the slope raster data set into a topographic position index (TPI) raster data set 

using the Topographic Position Index (TPI) extension (Jenness 2005) within ArcView 3.2 (ESRI 

1992-1999).  This extension first created a TPI raster data set that indicated each pixel’s relative 

position on the slope within a user-defined neighborhood, ranging from ridges at the top to 
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valleys at the bottom with slopes of various steepness in between.  I used two different 

classification schemes – 4-class and 6-class – to determine whether a finer resolution of analysis 

affected the determination of significances of ecological variables.  These schema are based on 

the TPI and slope values for each pixel (Table 4).  The 6-class system is based on a relative TPI 

using standard deviations (SD) from the mean TPI value of the entire data set and a slope of 5% 

(Weiss 2001).  The 4-class system is based on an absolute TPI value of 8 and a slope of 6% 

(Dickson & Beier 2002).   

 I also used two different sizes of analysis neighborhoods for TPI, either 100 m- and 200 

m-radius, to determine the appropriate scale at which to analyze the sites (Turner et al. 2001).  

Increasing the neighborhood distance causes the analysis to look at each pixel at a broader scale:  

what may be a valley at a 100 m window may actually turn out to be a depression in a ridge top 

at a 200 m window (Fig. 12).  Topographic position is a nominal-level datum, so I analyzed each 

of the twenty classes separately:  two different neighborhoods of both the six-class system 

(twelve classes) and of the four-class system (eight classes).  For each of the twenty classes, I 

compared the mean percent area of the training sites to those of the simulated sites. This ratio-

level data allowed me to run a one-way nonparametric ANOVA to determine which topographic 

positions were significant predictors of oak savanna complex presence.  The six-class, 100 m-

neighborhood topographic position data set is shown in Fig. 13. 

Model Calibration:  data analysis 

 Each ecological variable was analyzed to determine its significance in predicting the 

presence or absence of oak savanna complex by comparing the training sites of known presence 

to the simulated sites of presumed absence (Table 2).  The statistics analyzed were either the 

percentage of area of each site exhibiting a particular trait – a certain soil type or a certain 
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topographic position – or the mean physical attribute of each site – mean elevation, mean slope, 

mean percent flat or non-flat area, mean orientation of non-flat area – following standard 

 

Table 4:  Coarse- and fine-scale topographic position classification systems based on relative or 
absolute Topographic Position Index (TPI) and slope criteria (Jenness 2005). 

Classes TPI Slope  

SIX CLASS (Weiss 2001) 
1.  ridge  
2.  upper slope 
3.  middle slope 
4.  flat slope 
5.  lower slope 
6.  valley 

 
≤  1 SD 

1 SD to 0.5 SD 
0.5 SD to -0.5 SD 
0.5 SD to -0.5 SD 
-0.5 SD to ≤ -1 SD 

> -1 SD 
 

- 
- 

≥ 5° 
≤ 5° 

- 
- 

FOUR CLASS (Dickson & Beier 2002) 
1.  ridgeline  
2.  steep slope 
3.  gentle slope 
4.  canyon bottom  

 
≥ 8 

-8 to 8 
-8 to 8 
≤ -8 

 
- 

≥ 6° 
< 6° 

- 
 
  
predictive modeling statistical analysis (Franklin 1995; Guisan & Zimmermann 2000; Luoto et 

al. 2001; Nally et al. 2003).  The Hawth’s Tools extension randomly selected these simulated 

sites equal in number (47) and size (4.88 ha) to the training set (Beyer 2004).  The simulated 

sites were at least 1.00 km apart and were set randomly within the county except for within a 

training or evaluation site.  The Hawth’s Tools extension’s Thematic Raster Summary tool was 

used to derive this mean percent area data (Beyer 2004).   

 Most of the ecological variable data sets did not exhibit a normal distribution when 

normality was analyzed in SAS 8.01 (Shapiro-Wilks,  p < 0.05).  Therefore, all variables were 

analyzed using one-way nonparametric ANOVA in SAS 8.01.   This test returns the same values 

as the Wilcoxon test, also known as the Mann-Whitney U test, which is the statistical test often 

used for analyzing significance of ecological variables (Treves et al. 2004; Nally et al. 2003; 
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Luoto et al. 2001).  I accepted significance when there was a 95% probability that the difference 

in the means of the training and simulated sites was not due to random sampling (α = 0.05).  This 

corresponded to a p-value of less than 0.05 ( p < 0.05).  I used Satterthwaite’s corrected p-values 

for unequal variances regardless of the equality of variances between the training and simulated 

data sets because it provides a more conservative p-value with less chance of committing a Type 

I error of commission (SAS Institute Inc. 2000).  I determined the variable’s relationship – direct 

or inverse – by determining whether the variable was present more or less often in the training 

sites than in the simulated sites.  For the construction of the predictive models, I selected a 

suitable range for significant variables at a 95% confidence interval around the mean, consistent 

with my acceptance of a Type I error of 5% or less.   

Model Evaluation:  single- and multi-variable models 

 Each of the ecological variables determined to be a significant predictor of oak savanna 

complex presence was rated as to its predictive accuracy by conducting an internal evaluation 

using the set of evaluation sites (Table 2).  Each variable’s data set was reclassified to “1” as 

suitable or “0” as unsuitable.  Suitable was considered to be the sets of individual values for soil 

type, topographic position or flat aspect that were significant predictors of oak savanna complex, 

or the 95% confidence interval of the mean elevation, slope or non-flat aspect orientation if they 

were significant predictors of oak savanna complex.  I then examined each single-variable 

models’ predicted suitable areas and determined the following using the Hawth’s Tools 

Summary Statistics function:  the number of evaluation sites predicted accurately by each model 

as oak savanna complex; the total percent area of the evaluation sites accurately predicted; and 

the reduction of the search area, or how much of the county was eliminated as unsuitable for oak 

savanna complex.  
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 I then investigated whether or not combining individual variables into a single multi-

variable model would provide greater predictive accuracy.  I created a simple boolean model by 

combining the individual maps of the significant ecological variables using Spatial Analyst 

(Corsi et al. 2000; Guisan & Zimmermann 2000; Franklin 1995).  Creating a boolean additive 

model provides those without the advanced statistical knowledge of regression analysis to 

quantitatively analyze multiple data sets.  This created a new map with a data set that ranged in 

value from zero to the sum of the number of added maps.  The value of any pixel in the map was 

its suitability index score for the probability of presence of oak savanna complex.  A suitability 

index score of zero indicated that a particular area was considered unsuitable for each of the 

significant ecological variables criteria while a maximum score indicated that it met all of the 

criteria.  Any intermediate score indicated it met some of the criteria for oak savanna complex 

presence without indicating which particular criteria it met.  The areas for each particular index 

value were then considered as a multi-variable PGM and evaluated to determine the predictive 

accuracy provided by a PGM containing that number of ecological variables.  The internal 

evaluation was conducted in the same fashion as it was for the single-variable PGMs:  the 

number of evaluation sites predicted accurately as oak savanna complex; the total percent area 

accurately of the evaluation sites accurately predicted; and the reduction of the search area 

image, or how much of the county was eliminated as unsuitable for oak savanna complex.  

Model Validation 

 I created an external validation site data set to estimate the predictive accuracy of the 

multi-variable PGM (Table 2).  The multi-variable predictive model’s raster file was converted 

to a non-topological vector file using Spatial Analyst.  Hawth’s Tools Generate Random Points 

function selected a set of ten random points within the area predicted to meet the maximum 
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suitability index of 4 but outside the area of any training or evaluation sites (Beyer 2004).  These 

ten points were then visually inspected using an orthorectified high-resolution (6”) aerial 

photograph taken in 2003 in ArcGIS 9.1 to determine their immediate and adjacent land use and 

land cover (Kaczala 2005).  The higher the fraction of sites with those characteristics compatible 

with oak savanna complex conservation and restoration – rural residential, agricultural or 

forested land use; barrens to scrub to appropriate deciduous land cover – the greater the 

predictive accuracy and utility of the model. 
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III.  RESULTS 

Soil Type 

 A one-way nonparametric ANOVA showed that five soil types were significant 

predictors of oak savanna complex presence – OtB (Ottokee), Gr (Granby), OaB and OaC 

(Oakville) and TdA (Tedrow).  Thirteen soil types were significant indicators of absence of oak 

savanna complex:  DcA (Del Rey-Urban), Uo (Udorthents), So (Sloan), Ur (Urban), ByA 

(Bixler-Urban), Co (Colwood), NnA (Nappanee), HnA (Haskins), Ho (Hoytville), Mf (Mermill), 

To (Toledo), Lc (Latty), FuA (Fulton).  Forty-four soil types were not significant (Table 5). 

 

Table 5.  Soil types significantly associated with oak savanna complex presence        
(one-way nonparametric ANOVA, n = 94, p < 0.0001) 

Soil Type 
Training site 

mean area (%) 
Training site area 

variance 
Simulated site 
mean area (%) 

Simulated site 
variance 

Ottokee (OtB) 35.85 910.01 6.75 336.79 

Granby (Gr) 27.59 997.55 2.98 95.97 

Oakville (OaB) 12.76 540.03 0.00 0.00 

Tedrow (TdA) 10.99 424.25 1.20 37.41 

Oakville (OaC) 6.81 227.70 0.00 0.00 
 

Elevation 

 In Lucas County, elevation ranged from 170 m to 218 meters above sea level (masl).  A 

one-way nonparametric ANOVA showed that the mean of the training site elevations (205 masl) 

was a significant indicator  of oak savanna presence when compared to that of the simulated sites 

(191 masl) with a p < 0.0001 (Table 6).  The range of suitable elevations was set conservatively 

at 202 – 209 masl. 
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Table 6.  Significance of mean elevation (one-way nonparametric ANOVA, n = 94, p < 0.0001) 

Elevation (masl) Mean Variance CI lower CI upper 

training sites 205 4.13 201.41 209.53 

simulated sites 191 160.80 165.90 216.625 
 

Slope 

 In Lucas County, slope ranged between 0% to 28%.  A one-way nonparametric ANOVA 

showed that the mean slope of the training data set (1.415%) was not a significant predictor of 

oak savanna complex presence (p = 0.1206) (Table 7). 

 

Table 7.  Significance of mean slope (one-way nonparametric ANOVA, n = 94, p = 0.1206) 

Slope (%) Mean Variance CI lower CI upper 

training sites 1.42 0.79 -0.37 3.20 

simulated sites 1.32 1.99 -1.50 4.14 
 

Topographic position 

 A one-way nonparametric ANOVA showed that none of the eight 4-class topographic 

positions was a significant predictor of oak savanna complex presence (p > 0.50) regardless of 

neighborhood size.  Of the twelve 6-class topographic positions, only the ridge position was a 

significant predicator with a p < 0.0001 for both the 100 m- 200 m-radius neighborhood (Table 

8).  Conversely, flat slope was a significant predictor of oak savanna absence (p = 0.0002) for 

both the 100 m- and 200-m neighborhoods.  Because of the ability to account for the effects of 

larger landform interactions, the suitable topographic position was considered the ridge class of 

the 6-class, 200 m-radius neighborhood. 
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Table 8 .  Topographic positions associated with oak savanna complex presence       
(one-way nonparametric ANOVA, n = 94, p < 0.0001) 

Topographic position (% area) Mean Variance 

16.43 315.04 100 m, 6-class:  ridge  training 
                                   simulated 5.91 43.26 

28.39 780.91 200 m, 6-class:  ridge  training 
                                   simulated 8.76 141.53 

Aspect 

 Two qualities of aspect were analyzed – mean percent of flat areas and mean orientation 

of non-flat areas.  A one-way nonparametric ANOVA showed that the mean percent of flat area 

of the training sites at 28.22% was significantly lower than that of the simulated sites (47.03%, p 

= 0.0053) and that flat areas were a significant predictor of oak savanna complex absence.  

Therefore, non-flat areas would be a significant predictor for oak savanna presence.  The mean 

aspect orientation of the non-flat areas of the training sites of 172.22˚ was not a significant 

predictor of oak savanna complex when compared to that of the simulated site (157.19˚, p = 

0.2527) (Table 9). 

 

Table 9 .   Significance of flat aspect (one-way nonparametric ANOVA, n = 94, p = 0.0053) and 
non-flat aspect orientation (one-way nonparametric ANOVA, n = 81, p = 0.2527) 

Aspect Mean Variance 

28.22 1004.61 flat (% area)                 training 
                                     simulated 47.03 1215.28 

172.23 3212.95 orientation (degrees)   training 
                                    simulated 157.19 3925.21 
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Single-variable  Predictive Geographic Models 

 Maps of the predicted areas of high probability of presence of oak savanna complex were 

created for each of the significant ecological predictors:  soil type, mean elevation, topographic 

position and aspect (Figs 14-17).  The range of suitable values for each variable is shown in 

Table 10.  The percent of suitable area was the amount of the county that met that variable’s 

criteria.  The single-variable models which provided the greatest search area reduction were 

topographic position at 8.59% suitable area, followed by soil type, elevation and aspect.    

 

Table 10.  Suitable areas predicted by single-variable PGMs 

Characteristic Suitable values 
Suitable area 

(%) 
:Unsuitable 

area (%) 
Suitable county 

area (ha) 

soil type OtB, OaC, Gr, OaB, TdA 21.90 78.10 197.08 

elevation 202-209m 23.33 76.67 209.96 

topographic position ridge, 200 m 8.59 91.41 77.35 

aspect not flat 49.50 50.50 445.46 
 

Multi-variable Predictive Geographic Models 

 I was able to further reduce the search area by combining the four individual significant 

ecological variables into a single boolean overlay map.  The values of the data set creating a 

suitability index which ranged from 0 to 4.  A suitability index score of “0” indicated the 30 m-

pixel met none of the four criteria and a score of “4” indicated it met all four of the criteria for 

predicting oak savanna presence.  Areas meeting fewer criteria were assigned the respective 

number of criteria; all criteria were considered of equal importance.  The one drawback to this 

model was that it did not directly show which criteria were met for any given pixel; one would 
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have to refer back to the single-variable maps to determine whether a given variable was suitable 

or unsuitable.  This complication was later rectified by performing regression analysis.  This 

multi-variable PGM substantially reduced the search area in a range from 63.03% for one 

criterion up to 98.70% for all four criteria (Table 11).  The combined map is shown in  Figure 18. 

 

Table 11.  Suitable areas predicted by multi-variable PGMs using a suitability index 

Suitability index score Suitable area (%) Unsuitable area (%) Suitable county area (ha) 

4 1.30 98.70 1120.95 

3 5.82 94.18 5038.11 

2 17.81 82.19 15,407.55 

1 38.10 61.90 32,962.95 

0 36.97 63.03 31,987.89 

Internal Model Evaluation 

 All of the single- and multi-variable models predicted the location of evaluation sites 

very well, i.e., 87 – 100% accuracy, except for the 1-criterion multi-variable model (Table 12).  

Evaluation area predicted correctly ranged from 100% for the 3-criteria multi-variable model and 

93.1% for the soil type model, down to 35.9% for the topographic position model and 4% for the 

1-criterion multi-variable model.  Search area reduction ranged from 98.7% for the 4-criteria 

multi-variable model and 91.4% for the topographic position model, down to 61.9% for the 1-

criterion model and 50.5% for the non-flat aspect model.   

 To qualitatively determine which models provided the most utility, I ranked each model 

on a scale of 0-3 for three evaluation criteria:  number of evaluation sites predicted correctly; 

amount of evaluation site area predicted correctly; and search area reduction.  Those models 

fulfilling more criteria better had higher utility scores.  Based on this analysis, the soil type 
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model was the most accurate and most useful single-variable PGM because it located all of the 

evaluation sites, had a 93.1% correct evaluation site-area prediction and 78.1% search area 

reduction.  The second best single-variable PGM was the elevation model.  The best multi-

variable PGM was the 3-criteria model because it located all of the evaluation sites, had a 100% 

correct evaluation site-area prediction and 94.2% search area reduction. 

 

Table 12.  Internal evaluation of single- and multi-variable PGMs  

Model 
Sites 

predicted      
(# / %) 

Site area 
predicted  

(%) 

Search area 
reduction  

(%) 
Utility (0 – 9) 

single-variable: 

 soil  

 elevation 

 topographic position 

 aspect  

15  / 100% 

13  /   87% 

15  / 100% 

15  / 100% 

93.10 

74.46 

35.88 

81.45 

78.10 

76.67 

91.41 

50.50 

 

9 = 3+3+3 

7 = 2+2+3 

6 = 2+2+3 

6 = 3+2+1 

multi-variable: 

 4 criteria 

 3 criteria 

 2 criteria 

 1 criterion 

13  /   87% 

15  /  100% 

13  /   87% 

 5   /   33% 

19.63 

49.41 

27.51 

3.44 

98.70 

94.18 

82.19 

61.90 

 

5 = 2+0+3 

7 = 3+2+3 

5 = 2+1+2 

3 = 1+0+2 

External Model Validation 

 I examined the immediate and adjacent land use and land cover of the ten validation sites 

predicted by the 4-criteria multi-variable PGM.  Two sites were near residential development 

with large areas of agricultural or woods nearby that may still permit savanna restoration at a 

small scale.  Otherwise, the sites had land use (agricultural, forested,  rural residential) and land 
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cover (agricultural, grassland barrens, scrub-shrub, woodland) compatible with oak savanna 

acquisition and conservation.  Due to two of the sites posing some savanna restoration 

complications, the 4-criteria model’s validation was estimated at 90% predictive accuracy. 

Regression Analysis 

 The boolean overlay map allowed analysis of multiple data sets to determine how many 

criteria any one pixel met without showing which criteria were met.  Regression analysis 

highlighted which ecological variables explained the most variance in the presence or absence of 

the dependent variable, e.g. presence of oak savanna complex.  I performed a backward-stepwise 

logistic regression on the significant ecological predictors – suitable soil types, mean elevation, 

topographic position, mean area of non-flat aspect.  The most useful model was chosen based on 

four factors:  an acceptable amount of variance explanation (max-rescaled r2 approaching 1.00); 

the entire equation being a significant predictor (χ2 -value, likelihood ratio, p > 0.05); each of the 

constituent variables being a significant predictor (p < 0.05); and an acceptable goodness-of-fit 

(Hosmer & Lemeshow test, minimal χ2 -value, p approaching 1.00) (N. Boudreau, pers. comm.).  

This data is shown in Table 13; statistics not meeting criteria are shown with an asterisk.  The 

regression analysis confirms that the “best model” is a two-criteria model using soil and 

elevation.  The related regression equation (Eq. 1) was: 

 

Eq.1 y = -50.2339 + 0.0656*(suitable soil area) + 0.2280*(mean elevation) 
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Table 13 .   Backward-stepwise logistic regression analysis of significant ecological variables.  
Models indicate which significant ecological variables are included, max rescaled r2 indicates 
model’s explanation of variance, χ2 indicates significance of model as predictor of oak savanna 
complex. 

Model Max-
rescaled r2 

χ2, df 
p-value Constituent p-values Goodness-of-fit df

Soil- 
Elevation- 

Topographic position-
Aspect 

0.8836 102.15 
df = 4 

p < 0.0001 
 

soil, p < 0.0001 
elev, p = 0.0086 

topo, p = 0.5244* 
asp, p = 0.2440* 

p = 0.0979*  
df = 5 

 

Soil- 
Elevation- 

Aspect 

0.8812 101.66 
df =3 

p < 0.0001 

soil, p < 0.0001 
elev, p = 0.0115* 

p = 0.0872* 
 df = 6 

Soil- 
Elevation 

0.8612 97.58 
df = 2 

p < 0.0001 

soil, p < 0.0001 
elev, p = 0.0167 

p = 0.5086 
df = 7 
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IV.  DISCUSSION 

 This research successfully produced a simple, but statistically robust, model that 

accurately predicted current and potential oak savanna habitat in Lucas County, Ohio.  First and 

foremost, I quantitatively verified four groups of ecological variables that both significantly 

predicted presence of oak savanna complex and substantially reduced the search area of the 

county:  five soil types; mean elevation; ridge topographic position; and non-flat aspect.  Second, 

I assembled a collection of accurate, current, readily available digital data on various ecological 

variables.  Third, I created a layer of remnant high-quality and degraded oak savannas and oak 

barrens large enough to accommodate robust statistical analysis.  This training site data will be 

invaluable for future research and land management decisions.  The split-sample use of the study 

site data set into training and evaluation sites allowed me to internally evaluate my candidate 

single- and multi-variable models.  The data set was large enough that, even after retaining 25% 

of the sites as an evaluation set, it permitted up to five ecological variables for the multi-variable 

PGM which allowed for maximal model complexity with minimal model over-fit (Vaughan & 

Ormerod 2003; Guisan & Zimmermann 2000; Harrell et al. 1996).  

 The single-variable PGMs accurately predicted 87-100% of the evaluation sites and 36-

93% of the evaluation site area. The multi-variable PGMs had variable site predictive accuracy 

of 53-100% and were less predictive of the total site area with an accuracy of 5% (4 criteria) to 

83% (2 criteria).  Additionally, the models substantially reduced search area for oak savanna 

complex presence and were very accurate in predicting potential sites of current or restorable oak 

savanna complex in the validation data set.  The “suitable soil model” had the highest utility 

because it reduced the search area substantially (78.10%) while predicting 100% of the 

evaluation sites and 93.10% of the evaluation site area.  The two-criteria model, e.g., any two of 
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the four criteria were met, had the highest utility of the multi-variable models because it reduced 

the search area by 80% while predicting all of the evaluation sites and 82% of the their area.  

Regression analysis confirmed that a two-criteria model, which included suitable soils and 

elevation, explained the most variance in the oak savanna complex presence data set.  External 

validation estimated this multi-variable model’s predictive accuracy at 90% because nine of the 

ten validation sites had land cover and land use compatible with oak savanna complex 

acquisition and conservation (agricultural, barrens, scrub or forested, rural residential land use, 

and appropriate grassland or woody plant cover).   

 Finally, this model creation and calibration methodology are easily adapted to develop a 

prediction for a different ecosystem within the same landscape, or readily updated with new or 

more accurate information.  To create a new model, e.g., for wet prairies of the Oak Openings 

Region, the major step would to locate a training data set of existing high-quality and/or 

degraded wet prairies.  This data set could then be used with the same ecological variable data 

sets to determine variables that were significant predictors of the new ecosystem of interest.  

Conversely, if a newer soil type data set or a new parcel division data set became available, one 

would simply replace the old data set with the new one and rerun the analysis.  This approach is 

quantitative, flexible, and statistically robust. 

Strengths and limitations of predictive models 

 The accuracy of predictive models depends on the availability of an adequate amount of 

precise, accurate data.  A small sample size of observations or locations will decrease both the 

types and power of statistical analyses that can be performed as well as the predictive power of 

the resulting model (Vaughan & Ormerod 2003; Corsi et al. 2000; Guisan & Zimmermann 2000; 

Franklin 1995).  Although it is possible to generate a useful PM with a small data set, such as is 
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likely for a rare or cryptic species, it will likely have a lower predictive accuracy and may require 

substantial evaluation and validation.  For example, a PHM for green salamanders (Aneides 

aeneus) was built for a three-county area in southern Ohio from only seven training sites.  Even 

with this small data set, the model reduced the search area for this rare and cryptic species by 

99.30% and helped located five new records for the species (Lipps 2005). 

 For multi-variable PMs, the size of the data set also determines the number of variables 

that can be included in the model.  A ratio of 10:1 of the number of observations to the number 

of model variables maintains an acceptable amount of error while maximizing the model 

complexity and minimizing model over-fitting (Vaughan & Ormerod 2003; Harrell et al. 1996).  

The size of the data set available for this PHM allowed incorporation of up to five ecological 

variables into the model while retaining enough sites for an independent evaluation data set. 

 In addition to sample size, accuracy and precision of the ecological data from which the 

model is built and calibrated determine how well the model’s output will predict areas similar 

that same environment.  This research had access to a large data set of sites to both train and 

evaluate the model.  A smaller data set would have reduced the number of candidate predictive 

variables.  Digital data was not readily available for all of the ecological variables.  Some data 

had to be specially requested while other data was not available at all.  Canopy-cover or 

available-light data – a characteristic commonly accepted as significant to oak savanna complex 

presence – was not available north of the southern tier of Ohio counties (Weiher 2003; Leach & 

Givnish 1999).  Another unavailable layer was sand-strata thickness.  Unlike soil type, which 

only indicates ground materials up to 1.5m below the ground’s surface, the sand strata in areas of 

the Oak Openings Region is up to 30 m thick and may significantly influence both ecological 

processes and vegetative communities (Forsyth 1959). 
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 A second facet of predictive model accuracy is the extent of their transferability to areas 

outside the extent of their training and calibration data set.  Although properly-built mechanistic 

models may be transferred to larger spatial or temporal areas than empirical or analytical models, 

they are still limited to areas where the causal actions and interactions of the model hold true.  If 

the model is transferred to an area where the causal factors are different then the model’s 

accuracy decreases (Seoane et al. 2005; Guisan & Zimmermann 2000; Forsyth 1970).  As the 

predictions were constrained to the same region as the original training data set, this model does 

not risk errors due to inappropriate application of the model. 

 The final limitation of predictive models, and a limitation of GIS models in general, is the 

resolution of available data.  All of the available digital data had a standard 30 m resolution.  

Because this research was conducted at a landscape level and sought to predict large areas of 

ecological variables which do not change abruptly over a small distance across the landscape, 

this limitation did not negatively impact my study.  It cannot be ruled out that finer-resolution 

data could provide a better predictor of oak savanna presence.  For example, LIDAR (LIght 

Detection And Ranging) data has a horizontal resolution of 30-50 cm and a vertical resolution of 

8-10 cm, compared to the standard DEM horizontal and vertical resolutions of 30 m and 10 m.  

However, LIDAR data is currently very costly and not available for all areas.  A land manager 

would have to weigh the opportunity costs of acquiring this data against the use of these funds 

toward land acquisition, conservation or additional research. 

Recommended refinements to methodology 

 There are few foreseeable methodological refinements.  First, the validation process 

should be ground-truthed to determine whether the 2003 high-resolution aerial photography 

accurately reflects the validation sites’ land use and land cover.  Unlike most PGMs, this model 
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may not substantially benefit from a larger data set as it already produced a very useful four-

variable model from the available training data set.  Preliminary regression analysis showed that 

the best-fit model was actually composed of only two significant predictive variables – suitable 

soils and mean elevation – which the current data set was more than adequate to support.  This 

research confirms previous studies that soil type and elevation are ecological variables that are 

important either to savanna maintenance or to maintaining high biodiversity (Nally et al. 2003; 

Leach & Givnish 1999).  Additional ecologically relevant characteristics – canopy-cover/light-

availability, bedrock topography, depth to water, depth of glacial till, depth to bedrock, spatial 

configuration/connectivity of site, and means and seasonality of both temperature and 

precipitation – may provide greater predictive power to the model.  However, the cost to obtain 

data that is not currently available would likely outweigh additional predictive benefits. 

  Additional knowledge may be gained by separating the training data set into its high-

quality and degraded categories and into the oak savanna and oak barrens categories.  Creation of 

models for these more refined categories may provide vital information for land managers that 

wish to identify specific habitat quality levels or ecosystems, either for data collection or 

conservation purposes, or identify sites that are good candidates for ecological restoration.  

Separating the different quality sites would also allow a test of the assumption that the 

aggregation of sites of differing habitat quality and or ecosystem type produces a model that 

accurately predicts the union of both of these model components.  If validated, this may aid in 

the creation and use of predictive models for ecosystems with few available training sites.  

Implications for conservation 

 Efficient and effective conservation depends on proper planning and expenditure of 

money, effort and other resources.  It is critical to the short-term implementation success and 
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long-term sustainability of natural areas that conservation resources be focused on areas that are 

most conducive to the desired ecosystem.  This research has two major positive benefits for 

conservation.  First, my analysis determined which ecological variables are significant to the 

presence of oak savanna complex, e.g., suitable soils and appropriate elevation.  Not only can 

this guide acquisition efforts to areas more likely to result in a successful oak savanna complex, 

but it could also guide restoration efforts in recreating aspects of the environment in areas that 

may have differentiated from an oak savanna complex successional trend due to anthropogenic 

or other external factors such as fire suppression, hydrological alteration, woody plant succession 

or non-native species encroachment.  Second, the suitability index and map indicate areas that 

currently, or in the recent past, possess(ed) all, or some, of the these significant ecological 

variables.  This ranked index will help managers to prioritize their conservation and restoration 

efforts by focusing on areas with a higher oak savanna complex suitability score, which, due to 

their historic and current similarity to oak savanna complex will presumably require reduced 

effort require to move them towards a higher-quality oak savanna complex status. 

Future research 

 Areas of future research fall into two broad categories:  landscape ecology; and gap 

analysis and reserve design.  Landscape ecology focuses on three fundamental concepts:  scale; 

heterogeneity; and stochasticity (Turner 2005; Turner et al. 2001; Akcakaya 2000; Burke 2000; 

With et al. 1997; Schumaker 1996).  In addition to simple ecological process – ecosystem 

presence relationships, it would be useful to determine the relationships between ecosystem 

quality, patch size and functional or physical connectivity.  Understanding the relative 

importance of patch size versus connectivity to individual patch quality would help guide 

conservation decisions regarding acquisition and management, such as the SLOSS question 
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(Single-Large Or Several-Small) –  “should we purchase a few large parcels far apart or several 

small parcels close together?”  I would like to analyze the sizes and spatial configuration of my 

oak savanna complex study sites to determine any relationships between the quality of the sites 

with either the their size or their proximity to each other.  This could be accomplished using the 

various tools in ArcGIS 9.1’s Spatial Analyst.  I will also consider investigating the 

transferability of the model to the other areas of the Oak Openings Region including Fulton and 

Henry County and southern Michigan.  It may also be useful to determine how it performs in the 

savannas outside the Oak Openings Region in northeast and south-central Ohio. 

 Gap analysis is the process of comparing the total area of a species’ habitat or ecosystem 

of interest to the areas that are currently protected where the unprotected areas are the “gaps” in 

the network (Root et al. 2003; Allen et al. 2001; Jennings 2000).  Reserve design uses this 

knowledge as a starting point and designs a system of protected areas (Cowling et al. 2003; 

Kautz & Cox 2001; Akcakaya 2000; Clark & Slusher 2000; Hoctor et al. 2000).  These may be 

as simple as a set of protected single- or multiple-use areas close enough that the species or 

ecological process of interest can disperse or function.  They may also be complex networks with 

strictly-protected core areas, multiple-use buffer areas and physical or functional corridor-

linkages that actually promote and facilitate organism/process dispersal and gene flow.  In all of 

this, locating the ecosystem or species of interest is the first step.  I plan to create a data set of 

natural areas currently protected in the county, including oak savannas and oak barrens.  

Combining this with the data set of high probability areas of oak savanna complex produced by 

this current research will reveal the gaps of remnant or restorable areas that should be targeted 

for acquisition or restoration.  I will also collect landscape-level data on current anthropogenic 

variables such as land use, current and proposed infrastructure (roads, water and sewer lines), 
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and zoning restrictions to determine current and future development pressures in the county.  By 

combining these data sets, I can create a data set of anthropogenic “costs” to oak savanna 

acquisition or restoration.  Using least-cost path algorithms, GIS can determine which areas to 

acquire to connect currently protected areas via corridors of low development pressure. 

 

Conclusions 

 The use of GIS models to increase the efficiency and accuracy of locating species of 

interest is well-accepted.  This research expands the current range of predictive models from 

taxa-oriented – plant, mammal, bird, insect – to a greater level of scale:  ecosystems or 

landforms.  With a high degree of accuracy, the newly developed, simple, quantitative, model 

(with suitable soils and elevation) predicted areas where oak savannas are, or could potentially 

be, on the landscape of Northwest Ohio.  This GIS model utilized standardized concepts, freely 

available digital data and straightforward statistical analysis to create a tool that can be utilized 

by both land managers and academics, and will prove invaluable to conservation efforts to a 

globally rare oak savanna ecosystem.  
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VI.  APPENDIX A:  FIGURES
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Figure 1.  Pre-settlement extent and remnants of oak savanna and prairies in Ohio.  From 
Gordon (1966) in Nuzzo (1986).  Blue areas are oak savannas and green areas are prairies.  
Remnants are located in (1) the Oak Openings Region and (2) Union County. 
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Figure 2.  Vegetation of the Oak Openings at the Time of Euro-American Settlement 
(Brewer & Vankat 2004).   This delineation was based on a compilation of General Land Office 
Surveys of 1785 which showed the dominant vegetation communities during 1817-1832. 
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Figure. 3.  Savanna as ecotone between prairie and woodland. After (Packard & Mutel 
1997).  Savanna has lower tree density than oak woodland but more than prairie, and is 
dependent on fire to maintain this structure and composition. 

 

 

 

Figure. 4.  A classification of models based on their intrinsic properties.  After Levins ).  
This diagram illustrates the three general properties of predictive models –  realism, precision 
and accuracy – and the resulting model types:  empirical; mechanistic; analytical.  Increasing any 
two properties requires sacrificing the third. 
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Figure 5.  Location of study area:  Oak Openings Region of Lucas County, Ohio.  After 
Gordon (1966).  This map shows the study area as “oak savannas” (pink w/stippling) within a 
larger complex of “mixed oak forests” (pink), “beech forests” (green) and “elm-ash swap 
forests” (purple) with “prairie grasslands” (yellow) to the south. 
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Figure 6.  Study Site Locations.  Training sites (47) are shown in red; evaluation sites (15) are 
shown in blue.  The large complex between the two preserves is Lucas County Airport.  The 
roads are Ohio State Route 2 and the I-80/I-90 toll road. 
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Figure 12.  Effects of scale on topographic position analysis (Jenness 2005).  Analyzing a 
given area using a smaller neighborhood may result in inaccurate classification of a landform.  
For example, at the smaller scale (upper box), the leftmost area is identified as a lower slope.  At 
the larger scale (lower box), it is revealed that the landform is actually located at a small-scale 
depression on the top of a prominent ridge. 
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VII.  APPENDIX B:  SITE DATA 

 
Note:  the following applies to Tables 15 and 16 in this appendix: 

1.  Ecosystem subtype:   

 sb = sand barrens, aka Midwest sand barrens or “oak barrens” 

 lb = lupine barrens, aka Black Oak/Lupine barrens or “oak savannas” 

 dsb = degraded sand barrens 

 dlb = degraded lupine barrens 

2.  Owner-ID:  

 mpta = MetroParks of the Toledo Area 

 tnc = The Nature Conservancy 

3.  Area in hectares 

4.  Geographic location 
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Table 14.  Training site statistics and locations.  
Ecosystem subtype Owner-ID Area (ha) Latitude (°N) Longitude (°W) 

sb mpta3 2.85 -83.8528 41.5361 
dsb mpta4 1.87 -83.8600 41.5436 
dsb mpta7 6.50 -83.8588 41.5689 
dsb mpta8 1.66 -83.8363 41.5499 
dsb mpta9 6.83 -83.8347 41.5579 
dsb mpta10 4.64 -83.8205 41.5593 
dsb mpta11 1.12 -83.7654 41.5999 
dsb mpta13 1.35 -83.7736 41.6111 
sb mpta14 0.67 -83.7656 41.6398 
lb mpta15 11.93 -83.8467 41.5368 
lb mpta17 7.84 -83.8564 41.5573 

dlb mpta19 16.38 -83.8605 41.5620 
lb mpta21 6.58 -83.8380 41.5395 

dlb mpta23 33.84 -83.8424 41.5529 
lb mpta24 8.13 -83.8278 41.5397 
lb mpta25 6.20 -83.8686 41.5578 

dlb mpta26 7.29 -83.8675 41.5554 
lb mpta27 12.28 -83.8628 41.5792 

dlb mpta28 18.01 -83.8641 41.5722 
lb tnc1 0.91 -83.8037 41.6117 

dlb tnc2 7.77 -83.8034 41.6098 
sb tnc3 2.07 -83.8018 41.6081 
dlb tnc4 0.40 -83.8053 41.6090 
sb tnc5 4.63 -83.8113 41.6072 
lb tnc6 0.14 -83.8059 41.6066 
lb tnc7 1.20 -83.8074 41.6052 

dlb tnc8 4.48 -83.8008 41.6200 
dlb tnc9 0.20 -83.7896 41.6259 
dlb tnc10 0.10 -83.7888 41.6266 
dlb tnc12 1.33 -83.7893 41.6230 
dlb tnc13 0.77 -83.7855 41.6245 
dlb tnc14 0.44 -83.7863 41.6257 
dlb tnc15 0.99 -83.7857 41.6235 
dlb tnc16 0.52 -83.7869 41.6251 
sb tnc17 0.94 -83.7944 41.6177 
lb tnc19 0.20 -83.7900 41.6198 
sb tnc20 1.87 -83.7913 41.6188 
sb tnc21 0.23 -83.7916 41.6213 
lb tnc22 0.63 -83.7938 41.6214 
sb tnc23 0.37 -83.7936 41.6209 
dlb tnc26 27.74 -83.8091 41.6072 
sb tnc27 0.53 -83.7897 41.6185 
dlb tnc28 0.78 -83.7888 41.6186 
sb tnc30 3.19 -83.7857 41.6206 
dlb tnc31 0.95 -83.7839 41.6254 
dlb tnc32 1.04 -83.7816 41.6255 
sb tnc33 0.52 -83.7828 41.6256 
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Table 15.  Evaluation site statistics and locations. 

Ecosystem subtype Owner-ID Area (ha) Latitude (° N) Longitude (° W) 
sb mpta1 4.36 -83.8423 41.5346 
sb mpta2 0.58 -83.8367 41.5354 
sb mpta5 3.68 -83.8549 41.5511 
sb mpta6 5.28 -83.8525 41.5546 

dsb mpta12 0.99 -83.7748 41.6026 
lb mpta16 0.56 -83.83578 41.5354 

dlb mpta18 7.73 -83.8468 41.5591 
dlb mpta20 15.53 -83.8427 41.5380 
dlb mpta22 21.14 -83.8359 41.5460 
lb mpta29 9.38 -83.7728 41.6025 

dlb tnc11 1.86 -83.7891 41.6282 
lb tnc18 3.01 -83.7937 41.6197 
lb tnc24 2.81 -83.7885 41.6215 
sb tnc25 0.51 -83.7890 41.6213 
sb tnc29 4.06 -83.7864 41.6183 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

76

 

 

 
Lo

ng
itu

de
 

(°
W

) 

41
.5

57
3 

41
.6

04
0 

41
.6

28
6 

41
.5

96
9 

41
.5

70
4 

41
.4

80
9 

41
.6

64
8 

41
.5

85
6 

41
.6

18
5 

41
.4

91
4 

La
tit

ud
e 

(°
N

) 

-8
3.

82
70

 

-8
3.

79
00

 

-8
3.

81
05

 

-8
3.

84
50

 

-8
3.

82
08

 

-8
3.

87
60

 

-8
3.

78
86

 

-8
3.

85
03

 

-8
3.

83
03

 

-8
3.

86
33

 

D
is

ta
nc

e 
to

 
st

ru
ct

ur
e 

45
 m

 

12
0 

m
 

60
 m

 

7 
m

 

28
4 

m
 

87
 m

 

48
7 

m
 

13
9 

m
 

12
6 

m
 

47
 m

 

St
ru

ct
ur

e 
de

ns
ity

 

lig
ht

 

m
ed

iu
m

 

ve
ry

 li
gh

t 

lig
ht

 to
 

m
ed

iu
m

 

ve
ry

 li
gh

t 

ve
ry

 
lig

ht
 

ve
ry

 
lig

ht
 

ve
ry

 
lig

ht
 

ve
ry

 
lig

ht
 

lig
ht

 

A
dj

ac
en

t t
re

e 
de

ns
ity

 

no
ne

 to
 th

in
 

de
ci

du
ou

s 

th
in

 
de

ci
du

ou
s 

no
ne

 to
 th

ic
k 

de
ci

du
ou

s 

no
ne

 to
 th

in
 

de
ci

du
ou

s 

th
in

 
de

ci
du

ou
s 

no
ne

 to
 th

ic
k 

de
ci

du
ou

s 

th
in

 to
 th

ic
k 

de
ci

du
ou

s 

no
ne

 to
 th

in
 

de
ci

du
ou

s 

no
ne

 to
 th

ic
k 

de
ci

du
ou

s 

no
ne

 to
 th

in
 

de
ci

du
ou

s 

Tr
ee

 d
en

si
ty

 

th
in

 d
ec

id
uo

us
 

th
in

 d
ec

id
uo

us
 

th
ic

k 
de

ci
du

ou
s 

no
ne

 (r
ur

al
 

re
si

de
nt

ia
l) 

th
in

 d
ec

id
uo

us
 

no
ne

 
(a

gr
ic

ul
tu

ra
l) 

th
in

 d
ec

id
uo

us
 

no
ne

 
(a

gr
ic

ul
tu

ra
l) 

no
ne

 
(a

gr
ic

ul
tu

ra
l) 

th
in

 d
ec

id
uo

us
 

A
dj

ac
en

t l
an

d 
us

e 

ru
ra

l r
es

id
en

tia
l, 

fo
re

st
ed

 

fo
re

st
ed

, r
es

id
en

tia
l, 

co
m

m
er

ci
al

 

fo
re

st
ed

, a
gr

ic
ul

tu
ra

l, 
ru

ra
l 

re
si

de
nt

ia
l 

ag
ric

ul
tu

ra
l, 

fo
re

st
ed

, r
ur

al
 

to
 m

ed
iu

m
 re

si
de

nt
ia

l 

fo
re

st
ed

, a
gr

ic
ul

tu
ra

l, 
ru

ra
l 

re
si

de
nt

ia
l 

ag
ric

ul
tu

ra
l, 

fo
re

st
ed

, r
ur

al
 

re
si

de
nt

ia
l 

fo
re

st
ed

, a
gr

ic
ul

tu
ra

l, 
re

cr
ea

tio
na

l, 
ru

ra
l r

es
id

en
tia

l 

ag
ric

ul
tu

ra
l, 

fo
re

st
ed

, r
ur

al
 

re
si

de
nt

ia
l 

ag
ric

ul
tu

ra
l, 

fo
re

st
ed

, r
ur

al
 

re
si

de
nt

ia
l, 

co
m

m
er

ci
al

 

ag
ric

ul
tu

ra
l, 

re
si

de
nt

ia
l, 

fo
re

st
ed

 

La
nd

 u
se

 

ru
ra

l 
re

si
de

nt
ia

l 

fo
re

st
ed

 

fo
re

st
ed

 

ru
ra

l 
re

si
de

nt
ia

l 

fo
re

st
ed

 

ag
ric

ul
tu

ra
l 

fo
re

st
ed

 

ag
ric

ul
tu

ra
l 

ag
ric

ul
tu

ra
l 

re
si

de
nt

ia
l 

Pt
. 0 1 2 3 4 5 6 7 8 9 

Ta
bl

e 
17

.  
V

er
ifi

ca
tio

n 
si

te
 c

ha
ra

ct
er

is
tic

s a
nd

 lo
ca

tio
ns

.  
D

at
a 

in
cl

ud
es

 im
m

ed
ia

te
 a

nd
 a

dj
ac

en
t l

an
d 

us
es

 a
nd

 tr
ee

 
de

ns
iti

es
, s

tru
ct

ur
e 

de
ns

ity
, d

is
ta

nc
e 

to
 n

ea
re

st
 st

ru
ct

ur
e 

an
d 

ge
og

ra
ph

ic
 c

oo
rd

in
at

es
. 


